skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Padrao, Paulo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Digital technology has evolved towards a new way of processing information: web searches, social platforms, internet forums, and video games have substituted reading books and writing essays. Trainers and educators currently face the challenge of providing natural training and learning environments for digital-natives. In addition to physical spaces, effective training and education require virtual spaces. Digital twins enable trainees to interact with real hardware in virtual training environments. Interactive real-world elements are essential in the training of robot operators. A natural environment for the trainee supports an interesting learning experience while including enough professional substances. We present examples of how virtual environments utilizing digital twins and extended reality can be applied to enable natural and effective robotic training scenarios. Scenarios are validated using cross-platform client devices for extended reality implementations and safety training applications. 
    more » « less
  2. Prediction and estimation of phenomena of interest in aquatic environments are challenging since they present complex spatio-temporal dynamics. Over the past few decades, advances in machine learning and data processing contributed to ocean exploration and sampling using autonomous robots. In this work, we formulate a reinforcement learning framework to estimate spatio-temporal fields modeled by partial differential equations. The proposed framework addresses problems of the classic methods regarding the sampling process to determine the path to be used by the agent to collect samples. Simulation results demonstrate the applicability of our approach and show that the error at the end of the learning process is close to the expected error given by the fitting process due to added noise. 
    more » « less
  3. Scientists continue to study the red tide and fish-kill events happening in Florida. Machine learning applications using remote sensing data on coastal waters to monitor water quality parameters and detect harmful algal blooms are also being studied. Unmanned Surface Vehicles (USVs) and Autonomous Underwater Vehicles (AUVs) are often deployed on data collection and disaster response missions. To enhance study and mitigation efforts, robots must be able to use available data to navigate these underwater environments. In this study, we compute a satellite-derived underwater environment (SDUE) model by implementing a supervised machine learning model where remote sensing reflectance (Rrs) indices are labeled with in-situ data they correlate with. The models predict bathymetry and water quality parameters given a recent remote sensing image. In our experiment, we use Sentine1-2 (S2) images and in-situ data of the Biscayne Bay to create an SDUE that can be used as a Chlorophyll-a map. The SDUE is then used in an Extended Kalman Filter (EKF) application that solves an underwater vehicle localization and navigation problem. 
    more » « less
  4. The use of underwater robot systems, including Autonomous Underwater Vehicles (AUVs), has been studied as an effective way of monitoring and exploring dynamic aquatic environments. Furthermore, advances in artificial intelligence techniques and computer processing led to a significant effort towards fully autonomous navigation and energy-efficient approaches. In this work, we formulate a reinforcement learning framework for long-term navigation of underwater vehicles in dynamic environments using the techniques of tile coding and eligibility traces. Simulation results used actual oceanic data from the Regional Ocean Modeling System (ROMS) data set collected in Southern California Bight (SCB) region, California, USA 
    more » « less